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Transition metal-mediated higher-order cycloaddition reac­
tions have recently emerged as powerful methods for the 
construction of structurally elaborate polycyclic systems with 
attendant high levels of diastereoselection.' We now report that 
these transformations can deliver optically active cycloadducts 
from diastereomerically enriched tricarbonyl(cycloheptatriene)-
chromium(O) complexes that can be conveniently prepared with 
very good to excellent selectivity by chiral auxiliary-directed 
complexation. 

Access to chiral, nonracemic metal jr-complexes in related 
arene—chromium, ferrocene, and iron—diene systems is difficult 
and has most frequently been accomplished by employing 
various resolution techniques,2 by diastereoselective deproto-
nation of complexes containing chiral side chains,3 or by 
nucleophilic substitution on complexes possessing chiral aux­
iliaries.4 A potentially more direct entry into diastereomerically 
enriched complexes would involve face-selective complexation 
of an auxiliary-substituted jr-system. This strategy, however, 
has met with only limited success in a number of instances.3c'5 

Useful approaches have employed specialized, rigid auxiliaries6 

or heteroatom delivery7 for controlling Tt-face selectivity during 
complexation. Recently, Pearson8 and Alexakis9 have reported 
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auxiliary systems that promise some generality for the produc­
tion of chiral, nonracemic iron—diene and arene—chromium 
complexes, respectively. 

The requisite substituted cycloheptatriene ligands used in the 
current study were prepared using known procedures10 employ­
ing readily available auxiliaries. Both the 1- and 3-isomers were 
examined in the isopinocampheol (a) and 8-phenylmenthol (b) 
series; however, only the 3-substituted cycloheptatriene ligand 
could be accessed in the camphorsultam (c) series. The 
corresponding 2-substituted systems are more difficult to 
assemble via this addition—isomerization protocol, and com­
plexation results with these systems will be reported at a later 
time. 

"BF4 

XCH, NaH 

PhMe, RT a* 
1a (65%) 
1b (50%) 
1c (90%) 

(D 

a), X0H= (+)/(-)-isopinocampheol 
b), X0H= (-)-8-phenylmenthol 
c), X0H= (+)/(-)-2,10-camphorsultam 

100«C 135»C 

2a (68%) 
2b (45%) 
2c (60%) 

a 
3a (55%) 
3b (60%) 

Isomerically homogeneous trienes 3a" (from (4-)-iso-
pinocampheol) and 3b" (from (—)-8-phenylmenthol) were 
treated with excess (MeCN)3Cr(CO)3 to afford diastereomeric 
mixtures of complexes 4a1 '/5a1' and 4b1 '/5b,1' respectively (eq 
2). The major product (4a,b) in each case was isolated by 
recrystallization (hexanes) and the absolute configuration es­
tablished by X-ray analysis or by correlation with a complex 
of known stereogenicity. Photochemically initiated [6TZ + 2ri\ 
cycloaddition of 4a with ethyl acrylate afforded 6a1' in 86% 
yield (>98% de (1H NMR)), suggesting that the face-integrity 
of the metal—triene complex remained intact throughout the 
cycloaddition event.12 

Q - X ° (MeCN)SCr(CO)3 * < ^ Q + Q f * 0 

3a 
3b 

55% 
73% 

Cr(CO)3 

4a (4:1) 
4b (6:1) 

(2) 

Cr(CO)3 

5a 
5b 

4a + ^ C O 2 E t 

EtO2C 

* X 0 J ^ L H 
86% 

>98%de U6. 
O) 

Remarkably, ambient temperature complexation of triene 2c 
(from (+)-camphorsultam) with (MeCN)3Cr(CO>3 provided 
diastereomerically homogeneous complex 4c" (>98% de) in 
good chemical yield. None of the alternative complex could 
be detected in the crude reaction mixture by 1H NMR (500 
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2c 
(MeCN)3Cr(CO)3 

THF, RT 
70% 

>98%de 
(OC)3Cr 

(4) 

MHz). Photocycloaddition of this material with excess 2,4-
hexadiene afforded adduct 6c (82% yield, >98% de, X-ray). 
The auxiliary could be recovered by mild hydrolysis to the 
enantiomerically pure enone (4-)-7 (>99:1). The stereochemical 

4c 
hv 82% 
>98%de 

(+)-7 

4c 

EtO2C... I ....'CO2Et 
^CO2Et H J ^ V U H H*p^s|-H 

hv 82% 

8c (1:1) 9c 
(>98%de) (>98%de) 

homogeneity of this product was ascertained by performing a 
chiral europium shift reagent study and comparing the results 
with those obtained from racemic 7 prepared from the corre­
sponding 3-methoxy-substituted complex. A [6n + 2n\ cy-
cloaddition with complex 4c gave a 1:1 mixture of regioisomeric 
adducts 8c and 9c upon photolysis in the presence of ethyl 
aery late; however, each of these compounds was produced in 
virtually diastereomerically pure from (>98% de, assayed as 
above). 

2c + ^ C O 2 E t 
NpCr(CO)3 (10mol%) 

8c 9c (6) 
n-Bu20,1609C (>98%de) (>98%de) 

60% 
Np= naphthalene 

It is noteworthy that efforts to produce quantities of the 
complex diastereomeric to 4c via thermal equilibration9 afforded 
only quantitative recovery of the unchanged starting complex. 
This observation suggested that a thermal, catalytic version of 
the cycloaddition process13 could be performed directly on the 
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metal-free camphorsultam-substituted triene substrate and that 
this reaction would afford chiral, nonracemic products. Indeed, 
heating a mixture of 2c with excess ethyl aery late in the presence 
of a substoichiometric quantity of tricarbonyl(naphthalene)-
chromium(0)H (10 mol %) afforded a mixture of adducts 8c 
and 9c, in which each regioisomer was produced in essentially 
diastereomerically pure form (>98% de). In contrast, triene 
2a (X0 = (-l-)-isopinocampheol) afforded a mixture of adducts 
in which each regioisomer was produced without any detectable 
diastereoface selection under similar conditions. 

The remarkably high levels of face selection exhibited by 
the camphorsultam-derived triene system are difficult to ratio­
nalize at the present time. It is tempting to suggest the 
involvement a heteroatom-mediated delivery mechanism7 (via 
intervention of a sulfonamide oxygen); however, models are 
not particularly supportive of this explanation. Further work 
will be required to clarify this issue.15 

In conclusion, the feasibility of diastereoface-selective com-
plexation of substituted cycloheptatrienes has been demon­
strated, and the asymmetry of the resultant complexes can be 
translated into [6n + An] and [6TT + In] cycloadducts with 
complete integrity. 
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